单项式乘以单项式
课 题:单项式乘以单项式
教材分析:
本节课选自人教版八年级上册第十四章《整式的乘法与因式分解》的内容,是进一步学习方程、函数以及其它数学知识的基础,同时也是学习物理、化学等学科不可或缺的工具,与其它数学知识一样,它在生产和实际生活中有着广泛的应用。单项式乘以单项式用到了有理数的乘法、幂的运算性质,且后续的多项式与单项式的乘法,都要转化为单项式的乘法,并为因式分解的学习奠定基础,所以单项式乘以单项式将起到承前启后的作用,在整式乘除法中占有独特地位。因此本节课教学中要注重探讨单项式与单项式相乘的法则的形成过程。
学情分析:
在本节课之前,学生已掌握了有历史的乘法、交换律、乘法结合律及幂的运算法则。初中学生的认知水平较好,初中生能较好地模仿他们直接感知的东西,又具有一定的独立性,在认知能力的发展上,处于从具体形象思维向抽象思维过渡的阶段,具体形象思维仍起着重要的作用,而本节课用到了有理数的乘法、幂的运算性质,且后续的多项式与单项式的乘法,都要转化为单项式相乘,因此在教学过程中,要引导学生研究如何经过具体到抽象,特殊到一般,归纳概括得到性质。培养学生对知识的转化能力和学生对问题中所蕴含的数学规律进行探索的兴趣。
教学目标
1.知识与技能
理解整式运算的算理,会进行简单的整式乘法运算.
2.过程与方法
经历探索单项式乘以单项式的过程,体会乘法结合律的作用和转化的思想,发展有条理的思考及语言表达能力.
3.情感、态度与价值观
培养学生推理能力、计算能力,通过小组合作与交流,增强协作精神.
教学重、难点与关键
1.重点:单项式乘法运算法则的推导与应用.
2.难点:单项式乘法运算法则的推导与应用.
3.关键:通过创设一定的问题情境,推导出单项式与单项式相乘的运算法则,可以采用循序渐进的方法突破难点.
教学方法
采用“情境──探究”的教学方法,让学生在创设的情境之中自然地领悟知识.
教学过程
一、创设情境,操作导入
【手工比赛】
让学生在课前准备一张自己最满意的照片,自己制作一个美丽的像框.上课之后,首先来做游戏,“才艺大献”,把自己的照片加一个美丽的像框,看谁在10分钟之内,可以装饰出美丽的照片,谁的最好,老师就送他个好礼物.
【教师活动】组织学生参加“才艺比赛”.
【学生活动】完成上述手工制作,与同伴交流.
【教师引导】在学生完成之后,教师拿出一张美丽的风景照片,提出问题:你们看这幅美丽的风景图片,如何装饰它会更漂亮?
【学生回答】加一个美丽的像框.
【引入课题】假如要加一个美丽的像框,需要知道这幅图片的大小,现在告诉你,图片的长为mx,宽为x,你能计算出图片的面积吗?
【学生活动】动手列式,图片的面积为mx·x=?
【教师提问】对于mx·x=?的问题,前面我们已学习了乘法的运算律以及幂的运算法则,现在请你运用已学知识推导出它的结果.
【学生活动】先独立思考,再与同伴交流.
实际上mx·x=m(x·x)=m·x2=mx2.
【拓展延伸】请同学们继续计算mx·x=?
【学生活动】先独立完成,再与同伴交流,踊跃上台演示.
mx·x=m·x·x=m·x2=mx2.
【教师活动】请部分学生上台演示,然后大家共同讨论.www.12999.com
【继续探究】计算:(1)x·mx; (2)2a2b·3ab3;(3)(abc)·b2c.
【学生活动】独立完成,再与同学交流.
【教师活动】总结新知:我们根据自己做的题目的原则,得到单项式与单项式相乘的运算法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,放在积的因式中.
二、范例学习,应用所学
【例1】计算.
(1)3x2y·(-2xy3) (2)(-5a2b3)·(-4b2c)
【思路点拨】例1的两个小题,可先利用乘法交换律、结合律变形成数与数相乘,同底数幂与同底数幂相乘的形式,单独一个字母照抄.
【例2】卫星绕地球运动的速度(即第一宇宙速度)约为7.9×103米/秒,则卫星运行3×102秒所走的路程约是多少?
【教师活动】:引导学生参与到例1,例2的解决之中.
【学生活动】参与到教师的讲例之中,巩固新知.
三、问题讨论,加深理解
【问题牵引】
1.a·a可以看作是边长为a的正方形的面积,a·ab又怎样理解呢?
2.想一想,你会说明a·b,3a·2a以及3a·5ab的几何意义吗?
【教师活动】问题牵引,引导学生思考,提问个别学生.
【学生活动】分四人小组,合作学习.
四、能力拓展,巩固深化
课本P145练习第1、2题.
五、课堂总结,发展潜能
本节内容是单项式乘以单项式,重点是放在对运算法则的理解和应用上.
提问:(1)请同学们归纳出单项式乘以单项式的运算法则.
(2)在应用单项式乘以单项式运算法则时应注意些什么?
六、布置作业,专题突破
1.课本P149习题15.1第3题.
2.选用课时作业设计.
教学反思:
本节课让学生自主探索,适当合作,发现新知,归纳总结,充分发挥了学生主观能动性,在例题的设计上与实际生活相联系让学生感觉到数学知识可以服务于生活,学有所用。但也有不足的地方,对于能力拓展的这一部分知识学生掌握的并不是很理想,课堂的习题量不足,以后必须调整,还要适当关注学困生,保证学有所获。
https://math.sqnu.edu.cn/sfrz/zc