相反数
2021-09-14 17:36  

相反数

课题:相反数

教材分析:

本节课选自人教版七年级上册的内容,首先从数字特征角度总结出相反数的概念,然后借助数轴,从几何角度理解相反数的意义。相反数是中学学习的主要内容之一,它是研究了负数的基础上,遵循过渡时期学生的认知特点,既把小学所学的正数、零和初中的负数知识紧密结合起来,又为学生以后顺利掌握绝对值的意义,进行有理数的运算打下基础。在以后将要学习二次根式、方程、函数和相关学科等知识领域都有所渗透。因此,这节课内容对今后的学习具有重要作用。

学情分析:

在本节课之前,学生已经理解了有理数的意义,并用数轴上的点表示有理数,能比较有理数的大小,初步获得了分析问题和解决问题的一些基本方法。初步体验解决方法的多样性,初步发展了创新意识。

教学目标:

   1.知识与技能

   1)借助数轴了解相反数的概念,知道两个互为相反数的位置关系.

   2)给出一个数,能求出它的相反数.

   2.过程与方法

    借助数轴,通过观察特例,总结出相反数的概念.从数和形两个侧面理解相反数.

   3.情感、态度与价值观

   鼓励学生积极进行归纳、比较交流等活动.

教学重、难点与关键:

   1.重点:理解相反数的意义,会求一个数的相反数.

   2.难点:理解和掌握双重符合的简化.

   3.关键:通过观察特例,以及互为相反数的两个数在数轴上的位置,理解相反数

教学过程:

一、发散思维,引出课题

师:请同学们自己找出一条理由,将-4,+3,+4,-3分成两组.

1:我将-4、-3分在一组,将+4、+3分为另一组,就是将负数分为一组,正数分为另一组.

师:简单地说,就是将符号相同的放在一组.

2:我将-4,+4分在一组,将-3,+3分为另一组,就是把数是否相同作为分组的依据.

师:你的意思是-4与+4相同,所以把它们放在一组?

2:不是那个意思,我指的是-4与+4中都有4这个数,也就是符号后面的数相同,所以把它们放在一组.

师:什么数相同一定要说明,否则容易引起误会.(板书:符号后面的数)

3:我把-4与+3分在一组,把+4与-3分在另一组.理由是两个数的符号不同,符号后面的数也不相同.

二、比较概括,提炼定义

师:一般地,一个数由两部分构成,即符号和刚才提到的“符号后面的数”,考虑这两个方面,大家也就采用了三种不同的分法.两个方面都不相同是一种分法,把“符号”是否相同作为分组的依据,得到的是已经学过的一组正数和一组负数;把“符号后面的数”是否相同作为分组的依据,得到了-4与+4、+3与-3这样成对的数,那么它们又应该叫什么数呢?

4:相反数.

师:你是怎样想到把它们叫相反数的呢?

4:看书知道的.(众笑)

师:你先预习了今天的内容,知道了像+4与-4这样一对数是相反数(板书课题),不知是否想过,为什么叫相反数而不叫别的数呢?

4:没有想过.

师:现在请大家思考一下.

5:一个正数,一个负数,表示的意义相反,所以叫相反数.

师:说出了最重要原因.不过照这种说法,4与+3也是相反数,是吗?

(众):不是,它们符号后面的数不同.

师:分析的有道理.现在请大家用尽可能简单的一句话说明什么样的两个数叫相反数.

6:符号不同、符号后面的数相同的两个数叫相反数.(板书)

7:一个数前面添上不同的符号后得到的两个数叫相反数.(板书)

师:请你举例说明.

7:如5前面添上“+”“-”得到的+5和-5是相反数.

师:说的都很好,用简洁的语言把数的两个部分的关系都讲清楚了,课本上说“只有符号不同的两个数叫做互为相反数”(板书),这与刚才两个同学的说法一致吗?

(众):是一致的.“只有符号不同”说明其它的都相同,包含了“符号后面的数相同”的意思.

师:很好,挖掘出了言外之义.关于什么叫相反数,谁还有新的说法?

8:只有符号后面的数相同的两个数叫做互为相反数.(板书)

师:反应很快,“只有符号后面的数相同”的言外之意是“符号不同”,与课本上的说法是一致的.由此可见,同样的意思,可以用不同的语言来表达,在数学学习中,对此我们应该多加注意.需要说明的是,课本用“只有符号不同”包含“符号后面的数相同”的意思,好处是使相反数的概念更精炼,同时也避免了使用“符号后面的数”这一说法容易引起的误会,关于这一点,以后我们还将看到.

关于相反数,谁有什么疑问,请提出来.

9:为什么说“互为相反数”?

师:“互”就是“相互”的意思,如+4是-4的相反数,也可以说-4是+4的相反数,即+4与-4互为相反数.请大家一起把“+3与-3互为相反数”的意思说具体一点.

(众):+3是-3的相反数,-3是+3的相反数.

师:谁还有问题吗?

10:我的问题是零有没有相反数?

师:你怎么想起了这样一个问题呢?

10:前面提到的相反数总是一正一负,我就想到是否遗漏了零.

师:老师真为你高兴,你想到了一个不能遗漏的重要问题.关于零有没有相反数,请大家不要急于看课本,先思考一会,然后相互交流各自的看法.

生:(思考,讨论).

师:先请一个认为零没有相反数的同学说明理由.

11:因为相反数总是一正一负符号不同,而零既不是正数也不是负数,所以零没有相反数.

师:有道理.那么认为零有相反数的理由又是什么呢?

12:0也可以写成+0和-0.比如说某人做生意不赚也不亏,也可以说赚了0元,或说亏了0元,即可记作+0元和-0元,所以+0=-0=0,+0的相反数-0,0的相反数就是0.

师:也有道理.从表面上看,0与0互为相反数好象不符合符号不同这个要求,但是象生12举的例子中提到+0和-0,并且+0=-0=0,也是可以的,所以,关于特殊的零,课本上特别指出(板书):0的相反数是0.

口答练习:说出下列各数的相反数:-7,-0.5,0,6,+1.5

例 请在数轴上标出表示+4的相反数的点.

(老师有意隐藏了三角板、圆规,板演学生凭眼估计画出了表示-4的点)

师:请大家判断,表示-4的点位置是否正确?

(众):好象偏右了一点,应该还在左边一些.

师:正确的点应该在什么样的位置?

13:-4到原点的距离与+4到原点的距离相等.

师:还补充几个字就好了.

14:表示-4的点到原点的距离与表示+4的点到原点的距离相等.

师:非常准确.不是数到原点的距离,而是点到点的距离,表示数的点到原点的距离.谁到黑板上来检验表示-4的点的位置是否正确?

(一名学生利用三角板测量出了表示-4的点的正确位置,老师用圆规又检验了一次)

练习:把-6,5,0,-2.5和它们的相反数都表示在数轴上.

师:练习中,我们发现:除零外,在数轴上表示相反数的点分别位于原点的左右两边.为什么除零外表示相反数的点一定会分别位于原点的左右两边呢?

15:因为除零外,两个相反数总是一负一正,所以表示相反数的点分别位于原点的左右两边.

师:分析得对.谁能用相反数的概念中的某些词语来说明这个问题?

16:就是“符号不同”.

师:很好,因为“符号不同”,所以表示相反数的点分别位于原点的左右两边.当我们用眼观察图形,看出了相反数的一个特点后,一定要进一步开动大脑思考为什么会有这样的特点,而往往从概念中就能找到原因.从数轴上看,相反数的另外一个特点是:表示每一对相反数的点到原点的距离相等(板书).为什么表示相反数的两点到原点的距离相等?

17:相反数的概念中“只有符号不同”包含着其它的相同,就是“符号后面的数相同”,在数轴上就是距离相等.

师:很好,很快就掌握了老师提到的分析问题的方法.关于相反数,我们是从“符号”和“符号后面的数”两个方面去研究的,这两方面的特点既包含在相反数的概念中,又体现在数轴上,将二者结合起来考虑将有助于以后的数学学习.

师:在前面的分析中,我们总是将特殊的的零排除在外.请大家回顾一下,到现在为止,关于零的特殊性,表现在哪些方面?

生众:零既不是正数,也不是负数;零的相反数还是零;零不能作除数.

师:前面提到的三个方面中,有哪两个方面是联系在一起的?

18:前面两个方面是联系在一起的.因为零既不是正数,也不是负数,所以零的相反数还是零.

师:说的好,希望大家以后能向今天一样开动脑筋思考问题.请看练习.

练习及解答(略)

教学反思:

本节课是一节概念及概念应用课.教科书以现两个思考形式呈现本节的内容.

为了顺利完成教学任务,我先以发散思维的形式,让学生感受数字的变化,一下子把学生的注意力全集中在课堂上.带有激励性的语言,使数学积极参与到对问题的思考之中,符合七年级学生的年龄特点,带着好奇心和求知欲,学生很快进入学习状态.

在对相反数概念的提炼及应用的过程中,学生通过探究、合作、交流,以及师生有目的的对话,使学生对相反数有了更深的理解,培养了学生良好的思维品质,并用数学知识进行了检验,学生参与积极,思维活跃,兴趣高.通过对0有没有相反思的讨论,我又设计了一个开放问题,让学生自己解释有没有的原因,它具有思维的跨度,目的是让学生经历从发现、推理、验证到判断这一重要数学探究过程,同时这一问题也是相反数概念的外延,达到巩固新知的目的.

本节课我感到不足的地方是,学生参与面不够大,部分学生在活动中没有积极思考,不够大胆主动地发表自己的观点,担心自己说错了会让老师和同学们笑自己.

通过本节课我得到这样一个启示:

(一)导入新课要结合实例.良好的开端是成功的一半,引入阶段正处在一堂课的起始阶段,处理的是否恰当,直接影响到学生学习的情绪,以及思维的活跃程度.结合学生身边的实例导入新课,不但可提高学生的学习兴趣,激发求知的内驱力,而且可使所要学习的数学问题具体化,形象化.

(二)加深理解新知要联系生活实际.在新知的教学时,如果能结合学生的日常生活,创设学生熟悉与感兴趣的具体生活活动情况,就能引导学生通过联想、类比,沟通从具体的感性实践到抽象概括的道路,加深对新知的理解.

(三)巩固新知要在生活实践应用中.数学来源于实践,又服务于实践,为此在数学教学中,我们要创设运用数学知识的条件给学生以实际活动的机会,使学生在实践活动中加深对新学知识的巩固.

今后我要善于从学生已有的生活经验出发,创设生活中生动、有趣的的情境,强化感性认识,引导学生在情境中观察、操作、交流,使学生体验数学与日常生活的密切联系,感受数学在生活中的作用;加深对数学的理解,并运用数学知识解决现实问题.同时,鼓励学生多角度思考问题,优化解题策略.https://math.sqnu.edu.cn/sfrz/zc

关闭窗口