秦九韶算法与排序
2021-09-14 17:50  

秦九韶算法与排序

   题:秦九韶算法与排序

教材分析:

本节课是继上节课学习了算法案例的案例一之后,继续学习的算法案例二,学生们在学习中国古代数学中的算法案例二时,进一步体会算法的特点。学习了秦九韶算法之后,能使许多复杂的算法简单化,减少计算次数提高计算效率。

学情分析:

学生已经学习了计算机程序的基本实现方法,本节旨在让学生了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数提高计算效率的实质。

教学目标

a)知识与技能

1.了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数提高计算效率的实质。

2.掌握数据排序的原理能使用直接排序法与冒泡排序法给一组数据排序,进而能设计冒泡排序法的程序框图及程序,理解数学算法与计算机算法的区别,理解计算机对数学的辅助作用。

b)过程与方法

模仿秦九韶计算方法,体会古人计算构思的巧妙。能根据排序法中的直接插入排序法与冒泡排序法的步骤,了解数学计算转换为计算机计算的途径,从而探究计算机算法与数学算法的区别,体会计算机对数学学习的辅助作用。

c)情态与价值

通过对秦九韶算法的学习,了解中国古代数学家对数学的贡献,充分认识到我国文化历史的悠久。通过对排序法的学习,领会数学计算与计算机计算的区别,充分认识信息技术对数学的促进。

教学重难点

重点:1.秦九韶算法的特点

2.两种排序法的排序步骤及计算机程序设计

难点:1.秦九韶算法的先进性理解

2.排序法的计算机程序设计

学法与教学用具

学法:1.探究秦九韶算法对比一般计算方法中计算次数的改变,体会科学的计算。

2.模仿排序法中数字排序的步骤,理解计算机计算的一般步骤,领会数学计算在计算机上实施的要求。

教学用具:电脑,计算器,图形计算器

教学设想

(一)创设情景,揭示课题

我们已经学过了多项式的计算,下面我们计算一下多项式

时的值,并统计所做的计算的种类及计算次数。

根据我们的计算统计可以得出我们共需要10次乘法运算,5次加法运算。

我们把多项式变形为:再统计一下计算当时的值时需要的计算次数,可以得出仅需4次乘法和5次加法运算即可得出结果。显然少了6次乘法运算。这种算法就叫秦九韶算法。

(二)研探新知

1.秦九韶计算多项式的方法

1 已知一个5次多项式为

用秦九韶算法求这个多项式当时的值。

解:略

思考:(1)例1计算时需要多少次乘法计算?多少次加法计算?

    2)在利用秦九韶算法计算n次多项式当时需要多少次乘法计算和多少次加法计算?

练习:利用秦九韶算法计算

时的值,并统计需要多少次乘法计算和多少次加法计算?

2  设计利用秦九韶算法计算5次多项式

时的值的程序框图。

解:程序框图如下:

练习:利用程序框图试编写BASIC程序并在计算机上测试自己的程序。

2.排序

在信息技术课中我们学习过电子表格,电子表格对分数的排序非常简单,那么电子计算机是怎么对数据进行排序的呢?

阅读课本P30—P31面的内容,回答下面的问题:

(1)排序法中的直接插入排序法与冒泡排序法的步骤有什么区别?

(2)冒泡法排序中对5个数字进行排序最多需要多少趟?

(3)在冒泡法排序对5个数字进行排序的每一趟中需要比较大小几次?

游戏:5位同学每人拿一个数字牌在讲台上演示冒泡排序法对5个数据4,11,7,9,6排序的过程,让学生通过观察叙述冒泡排序法的主要步骤.并结合步骤解决例3的问题.

3 用冒泡排序法对数据7,5,3,9,1从小到大进行排序

:P32

练习:写出用冒泡排序法对5个数据4,11,7,9,6排序的过程中每一趟排序的结果.

4 设计冒泡排序法对5个数据进行排序的程序框图.

: 程序框图如下:

思考:直接排序法的程序框图如何设计?可否把上述程序框图转化为程序?

练习:用直接排序法对例3中的数据从小到大排序

3.小结:

(1)秦九韶算法计算多项式的值及程序设计

(2)数字排序法中的常见的两种排序法直接插入排序法与冒泡排序法

(3)冒泡法排序的计算机程序框图设计

5)评价设计

作业:P38 A(2)(3)

补充:设计程序框图对上述两组数进行排序

教学反思:

通过本节的学习,使学生模仿秦九韶计算方法,体会我国古代人民计算构思的巧妙。了解数学计算转换为计算机计算的途径,从而探究计算机算法与数学算法的区别,体会计算机对数学学习的辅助作用。了解我国古代数学家对数学的贡献,充分认识到我国文化历史的悠久。本节课主要发挥学生的主体作用和教师的主导作用,采用启发式,并遵循循序渐进的教学原则。这有利于学生掌握从现象到本质,从已知到未知逐步形成概念的学习方法,有利于发展学生抽象思维能力和逻辑推理能力。https://math.sqnu.edu.cn/sfrz/zc

关闭窗口